Simultaneous determination of the two components of picrotoxin in serum by reversedphase high-performance liquid chromatography with application to a pharmacokinetic study in

 rats*R SOTO-OTERO, E MENDEZ-ALVAREZ, G SIERRA-PAREDES, J GALAN-VALIENTE, E AGUILAR-VEIGA and G SIERRA-MARCUÑO \dagger
Department of Biochemistry and Molecular Biology, Division of Neurosciences, School of Medicine, E-15706 Santiago de Compostela, Spain

Abstract

A reversed-phase HPLC method is reported which allows the quantification of picrotin and picrotoxinin in serum A linear response was obtained for both drugs in the range $02-20 \mu \mathrm{~g} \mathrm{ml}^{-1}$ The withın-day and between-day precisions were $08-37 \%$ and 13-49\%, respectively The mean recoveries were greater than 942% The method was applied to a pharmacokinetic study following intraperitoneal (1 p) administration of $3 \mathrm{mg} \mathrm{kg}{ }^{-1}$ of picrotoxin in rats The obtained data suggest a relatively slow absorption after $1 p$ administration followed by a rapid elimination from the central compartment according to a one-compartment open model The elimination half-lives were $0340 \pm 00308 \mathrm{~h}$ for picrotin and $0312 \pm 00241 \mathrm{~h}$ for picrotoxinin

Keywords Reversed-phase, HPLC, pıcrotoxin, pıcrotin, serum, picrotoxinin, pharmacokinetics, rat, pharmaceutical analysıs

Introduction

Picrotoxin (PCX) is a stımulant of the central nervous system produced by Anamerta cocculus, a plant of the Menispermaceae famıly Its convulsive effects were first described in 1875 by Browne [1] At present, it is generally agreed that PCX exerts its neurophysiological action by blockage of the GABA-mediated inhibitory transmission [2] Since it blocks the GABA-induced increase in chlonide flux [3] and does not inhibit the binding of GABA to its receptor [4], it has been suggested that PCX inhibits the GABA receptor-1onophore system at a different site to the GABA recognition site [5] Chemically, PCX is on equimolar mixture of two sesquiterpencs, picrotin (PCN, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-3,6-methano-8H-1,5, 7-troxacyclopenta[ı] cycloprop[a]azulene-4,8-(3H)dıone) and picrotoxımın (PCXN, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-3,6-methano-8H-1,5,7-tri-

[^0]

PICROTIN

PICROTOXININ

Figure 1
Structures of PCN and PCNX
oxacyclopenta[ı] cycloprop[a]azulene-4,8(3H)-dıone) (Fig 1) Pharmacologıcally, PCXN is almost 50 times more active than PCN [6]

Although PCX has been used in the treatment of barbiturate poisoning, at present it is exclusively used as a chemoconvulsant to create experimental models of epılepsy [7] These models are used to investigate the biochemical basis of epilepsy and also in the screening of new antıepıleptic drugs [8] However, despite the widespread use of PCX in studying and treating epilepsy, there is as yet no reported method for separatıng and quantifying the two components of the drug, and there is very little information on its pharmacokinetic behaviour The aim of this study was to develop a sensitive and reproducible method for the simultaneous determination of PCXN and PCN in serum that could be used in basic biomedical research In this paper, a reversed-phase HPLC procedure is reported for the quantification of PCXN and PCN in serum, together with its successful application to evaluate the pharmacokinetics of these two compounds after the administration of a convulsive dose of PCX to rats

Materials and Methods

Chemıcals

PCX, PCXN and PCN were obtained from Sigma Chemıcal Co (St Lous, MO, USA) Dihydrocarbamazepıne (internal standard) was purchased from AldrichChemıe (Steınheım, FRG) HPLC grade acetonitrile was obtained from Romıl Chemicals Ltd (Shepshed, Leicester, UK) Chloroform and n-hexane were LiChrosolv ${ }^{\circledR}$ grade from Merck (Darmstadt, FRG) HPLC grade water was prepared with the MilliRO/Q water purification system (Millipore Corp, Bedford, MA, USA) All other chemicals were of analytical reagent grade from Merck

Apparatus

The liquid chromatograph consisted of a Model 620 solvent delivery system (Kontron AG, Zurich, Switzerland) equipped with a Model 7125 Rheodyne injector, a Uvikon Model 720LC variable-wavelength detector (Kontron AG), a Model 3390A integrator (Hewlett-Packard, Avondale, PA, USA), and a Model 200 programmer (Kontron AG) The separation was carried out on a Spherisorb ODS, $5 \mu \mathrm{~m}, 250 \times 46 \mathrm{~mm} 1 \mathrm{~d}$ column (Kontron AG) linked to a pre-column ($50 \times 46 \mathrm{~mm} 1 \mathrm{~d}$) filled with Co Pell ODS (Whatman, Clifton, NJ, USA)

Standards

Stock solutions contaıning $1 \mathrm{mg} \mathrm{ml}^{-1}$ of PCX, PCXN, PCN and dihydrocarbamazepine were prepared in methanol These solutions were stable for at least 2 weeks at $4^{\circ} \mathrm{C}$ in vials with Teflon-faced rubber liners (Alltech Associates, Deerfield, IL, USA) The vials were wrapped with aluminium foil to exclude light

Calıbration standards contaıning PCXN and PCN (both $02-20 \mu \mathrm{~g} \mathrm{ml}^{-1}$) were prepared in drug-free sera from Wistar rats

A working solution of the internal standard was prepared dally in water to give a concentration of $2 \mu \mathrm{~g} \mathrm{ml}^{-1}$ dihydrocarbamazepine

Extractıon procedure

To 1 ml of serum or calibration standard, $100 \mu \mathrm{l}$ of the working internal standard solution was added, followed by 3 ml of n-hexane After vortex-mixing for 1 min the centrifuging at 3000 g for 5 min , the upper n-hexane layer was discarded, and the aqueous layer was immediately extracted with 5 ml of chloroform After centrifugation (3000 g for 5 mm), the aqueous layer was discarded and the chloroform layer evaporated to dryness at room temperature $\left(20^{\circ} \mathrm{C}\right)$ in a Speed Vac Concentrator (Savant Instruments Inc , Farmigdale, NY, USA) The residue was reconstituted in 50μ of the mobile phase and $20 \mu \mathrm{I}$ injected into the chromatograph

Chromatographic condittons

The mobile phase consisted of acetonitrile- 1 mM ammonium acetate buffer (pH 64) 34.66, v/v) Prior to use, this mixture was filtered and degassed by passing it through a $05 \mu \mathrm{~m}$ filter type HVLP 04700 (Millipore Corp) under reduced pressure The chromatography was performed at room temperature with a flow rate of $15 \mathrm{ml} \mathrm{min}^{-1}$ The effluent was monitored at 200 nm , and quantification was based on peak-height ratio of analyte to the internal standard

Pharmacokinetic analysis

The pharmacokinetics of PCN and PCNX were analysed according to a onecompartment open model based on the monophasic decay of the serum concentrationtıme curves [9] The absorption rate constant, elimination half-life, and the area under the serum concentration-tıme curve ($A U C$) were calculated using the interactive program IGPHARM [10], implemented on a model 50 IBM PS/2 computer Total body clearances were also calculated using the formula $C L / F=$ dose $/ A U C$, where F represents the bioavailability

For this study 35 male Wistar rats weighing $250-350 \mathrm{~g}$ were used After 1 p administration of a single $3 \mathrm{mg} \mathrm{kg}^{-1}$ dose of PCX dissolved in a saline solution, groups of five anımals were sacrificed by decapitation at $5,10,15,30,60,90$ and 120 min Blood was collected from the severed great vessels of the neck and serum was later separated by centrifugation, and then frozen at $-20^{\circ} \mathrm{C}$ for subsequent analysis

Results and Discussion

Method evaluatoon

Figure 2 shows typical chromatograms of (A) a blank serum extract and (B) a serum extract from a rat treated intraperitoneally with a dose of $3 \mathrm{mg} \mathrm{kg}^{-1}$ of PCX and it can be seen that PCN and PCNX eluted as symmetrical peaks free of interference from

Figure 2
Chromatograms of (A) a drug-free serum extract, and (B) an extract of a serum sample obtained 30 mm after ip administration of $3 \mathrm{mg} \mathrm{kg}^{-1}$ PNX I S $=$ internal standard Attenuation was 2^{3}
endogenous components The retention tımes were $508(\mathrm{PCN}), 731(\mathrm{PCXN})$ and 1244 min (internal standard)

Ammonium acetate buffer was preferred to other buffers (citrate, phosphate) in the mobile phase since it gave the minimum background signal Concentrations of ammonium acetate buffer higher than 1 mM were accompanied by an increase in the background signal

Calıbratıon curves for PCN and PCXN were linear within the range examıned ($02-20 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$) The correlation coefficients for the regression lines were 0997 for PCN and 0999 for PCXN

The within-day and between-day precisions were established at three different concentrations (02,5 and $20 \mu \mathrm{~g} \mathrm{ml}^{-1}$) for PCN and PCXN by adding these two compounds to serum The coefficients of vanation $08-37 \%$ for the within-day and 13-4 9% for the between-day precision (Table 1) From these results it was concluded that calibration curves can be used for at least 1 week

It was found that the pre-extraction with n-hexane to elıminate neutral lipids, appreciably extended the useful life of the analytical column The mean recoveries of the drugs from serum were greater than 942 and 973% for PCN and PCXN, respectively These results were obtained for three concentrations (02,5 and $20 \mu \mathrm{~g} \mathrm{ml}^{-1}$) of each compound

To determine the specificity of the method, the relative retention times of some antiepileptic drugs, and their major metabolites, that might be co-administered with PCX in basic biomedical research were determined None of the compounds tested showed any interference with the present assay method Other drugs tested, but

Table 1
Precision in the simultaneous determination of PCN and PCXN in spiked serum

	Added $\left(\mu \mathrm{g} \mathrm{ml}^{-1}\right)$	Within-day $(n=10)^{*}$ $\left(\mu \mathrm{~g} \mathrm{ml}^{-1}\right)$		C V $(\%)$	

* Number of analyses in 1 day
\dagger Number of days with one analysis/day
\ddagger Coefficient of variation
Table 2
Relative retention times of assayed drugs and some potentially interfering substances

Drug	RRT
Phenylethylmalonamıde	025
p-Hydroxyphenobarbıtal	027
Ethosuxımıde	031
Prımıdone	031
Trans-10,11-dıhydro-10,11-dıhydroxycarbamazepıne	031
PCN	043
5-(p-Hydroxyphenyl)-5-phenylhydantoın	046
Phenobarbıtal	047
Carbamazepıne-10,11-epoxıde	052
PCNX	059
Phenytoın	075
Pentobarbıtal	089
10,11-Dihydrocarbamazepıne (int stand)	100
Carbamazepıne	107

RRT $=$ relative retention tıme
undetected using the reported chromatographic conditions, were clonazepan, diazepam, oxazepam, N-desmethyldıazepam, temazepam, and flunıtrazepam

Pharmacokinetıc study

Figure 3 shows the mean serum concentration-tıme profiles for PCN and PCXN after 1 p adminstration of a single dose ($3 \mathrm{mg} \mathrm{kg}{ }^{-1}$) of PCX The peak concentrations were reached after 30 min and the serum levels then followed a monoexponential decay with time From these results, it was assumed that a one-compartment open model approximates the pattern of PCN and PCXN dıstribution in rats after 1 p admınıstration of PCX Table 3 summarizes the mean pharmacokinetic parameters estımated for PCN and PCXN In an attempt to correlate the PCX-induced seizure activity and the serum levels of its components, the convulsant behaviour of the anımals was examıned throughout the experiments About 15 min after administration of PCX, an increasing muscular twitching was observed, followed after some minutes by clonic convulsions, accompanied by intermittent tonic-clonic seizures Convulsant actıvity started to decline about 50 min after administration of the drug These observations are consistent with

Figure 3
Mean (SE) serum concentratıon-tıme profiles of PCN and PCX after 1 p admınistration of a single dose of $3 \mathrm{mg} \mathrm{kg}^{-1}$ of PCX $(n=5) \triangle, \mathrm{PCN}, \mathrm{PCNX}$

Table 3
Pharmacokınetıc parameters after ip admınıstration of a sıngle dose of $3 \mathrm{mg} \mathrm{kg}^{-1}$ of PCX

	PCN	PCNX
Absorptıon rate constant $\left(\mathrm{h}^{-1}\right)$	276 ± 0182	426 ± 0240
Elıminatıon half-lfe (h)	0340 ± 00308	0312 ± 00241
AUC $(\mu \mathrm{g} \mathrm{ml}$		
Clearance bıoavaılabılıty $\left(\mathrm{ml} \mathrm{h}^{-1} \mathrm{~kg}\right)$	118 ± 0112	144 ± 00985

Data are mean \pm SE values, 35 anımals were used
those reported previously [11, 12] These data suggest a close correlation between the convulsant activity produced by PCX and the serum levels of PCN and PCXN However, in view of the low activity reported for PCN [6], the observed pharmacologic effects of PCX may be related to the serum levels of PCXN alone During the course of these experıments, six rats died approximately 30 min after admınıstration of PCX

Acknowledgements - This work was supported by Research Grant 903/84 from the CAICYT, Madrid, Spain We would also like to thank Dr J L Otero-Cepeda for developing the statistical programs and Miss M J Freire-Doce for technical assistance

References

[1] J C Browne, Br Med J 1, 409-411 (1975)
[2] A Takeuchı and N Takeuchı, J Physiol 205, 377-391 (1969)
[3] M K Tıcku and R W Olsen, Bıochim Bıophys Acta 464, 519-529 (1977)
[4] S J Enna, J F Collins and S H Snyder, Brain Res 124, 185-190 (1977)
[5] R W Olsen, R K Wansley, R J Lee and P Lomax, in Advances in Neurology, Vol 44 (A V Delagado-Escueta, A A Ward, D M Woodbury and R J Porter, Eds), pp 365-378 Raven Press, New York (1986)
[6] C H Jarboe, L A Porter and R T Buckler, J Med Chem 11, 729-731 (1968)
[7] W E Stone, in Experimental Models in Epilepsy (D P Purpura, J K Penry, D B Tower and D M Woodbury, Eds), pp 407-432 Raven Press, New York (1972)
[8] E A Swinyard, in Antıconvulsant Drugs International Encyclopedıa of Pharmacology and Therapeutics (J Mercier, Ed), pp 47-65 Pergamon Press, Oxford (1972)
[9] M Gibaldı and D Perrier, in Farmacocinetica (J Swarbrick, Ed), pp 1-45 Editorial Reverte S A , Barcelona (1982)
[10] C Gomenı and R Gomenı, Comput Bıomed Res 11, 345-361 (1978)
[11] F Hahn, Pharmac Rev 12, 447-530 (1960)
[12] W E Stone, J K Tews and E N Mitchell, Neurology 10, 241-248 (1960)
[Recelved for review 13 May 1988]

[^0]: *Presented in part at the 2nd Meeting of Bıo-Chromatography, Paris, France, 2-4 June 1988
 \dagger To whom correspondence should be addressed

